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Spectral properties of small dusty clusters
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A monolayer dusty crystal can be observed in the glow discharge. In particular, a small number of dusty
grains form simple atomlike plane clusters. Stability and oscillations of the polygonal cluster are considered.
For the simplest stable clusters normal displacements and frequencies are found for an arbitrary form of mutual
interaction. The measurement of these modes can help to give in detail the form of the potential function.
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I. INTRODUCTION

Numerous industrial applications have triggered active
search on the phenomena associated with dust dynami
low-pressure glow discharge@1#. Dusty plasma is formed by
introducing micron-sized grains into plasma. Typically t
grains are negatively charged due to higher mobility of el
trons as compared to that of ions. Then the dusty grains
be electrically suspended in the sheath above the electro
where the gravity is exactly balanced by the electric forc

The suspended dusty particles can be strongly cou
due to their high-negative charge~about 104 electrons per
micron-sized grain! to form liquid states and ordered lattic
structures known as Coulomb crystals@2–7#.

The reader should keep in mind that the plasma edge
the electrodes is characterized by highly nonequilibrium c
ditions. The grains are exposed to a vertical ion flow res
ing both in an ion-drag force@8# and specific attractive force
induced by the ions focusing@9#. Then the mutual interaction
in a bulk dusty crystal is characterized by a complica
strongly anisotropic potential.

Alternatively, a monolayer dusty crystal can also be
duced in a glow discharge. In this case, the grains lie i
two-dimensional~2D! plane normal to the vertical ion flow
Their mutual interaction is much simpler and can be char
terized by the repulsive Yukawa potential

U~r !5
q2

r
expS 2

r

r d
D , ~1!

where q is the grain charge andr d is the Debye length.
Equation~1! is believed to be a reasonable first approxim
tion. In more complicated cases, it may be accomplis
with the terms describing the non-Debye shielding,
shadow force, and other effects. In particular, we will co
sider a more general potential function containing the sh
range repulsion and the long-range attraction,

U~r !5
q2

r
expS 2

r

r d
D2a

q2

r
, ~2!

where the parametera ranges from 0 to 1.
In an infinite 2D crystal, the triangular lattice is the bas

stable structure. The opposite case corresponds to a relat
small number of dusty grains. This type of classical syste
consisting of a small number of particles interacting throu
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repulsive interactions was observed in recent experime
@10,11#. It can be classified as the strongly coupled atoml
clusters. The grains undergo some external confining fo
that can be approximated by the parabolic potential,

Uconf5
1
2 mv0

2r 2, ~3!

wherem is the grain mass andv0 is seen as the frequency o
axial oscillations of a single grain. The productmv0

2 de-
scribes the confining potential curvature. This curvature
be varied in experiments.

Depending on the total number of particles the confin
potential’s detailed form and mutual repulsion, a comp
cated structure with the inner triangular cores surrounded
the outer circular shells can be observed. Certain numbe
particles have multiple stable equilibrium states. If the nu
ber of particles is small~from 1 to 5!, the grains form an
extremely simple polygonal configuration. In this paper w
study eigenmodes and spectral properties of such
‘‘atom.’’

The equilibrium dusty crystals of the smallest size a
predictable. The grain position can be simulated by a sim
analytical model@12#. The dusty polygon perturbation in th
direction perpendicular to the polygon’s plane has previou
been considered@13#. Here attention focuses on the oscill
tions located in the polygon plane. The goal is to present
results applicable to the arbitrary potential functionU(r ),
provided that a polygonal solution exists. Then the measu
ments of the eigenmodes and frequencies will allow one
restore appropriate corrections to Eq.~1!.

II. BASIC EQUATIONS

Let N point dusty grains with massm and chargeq be
exposed to the parabolic potential~3!. The equation of mo-
tion for the particlen includes the trapping potential contr
bution and the forces of interaction with thekth particle. We
assume that the grains interaction can be described by
potential functionU(r ). In order to simplify the expression
for the mutual forces, we introduce a certain functionf (j),
so to put the potential in the form

U~r ![ f ~r 2!.

Then the classical equation of motion is
©2001 The American Physical Society07-1
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d2rWn

dt2
1v0

2rWn1
2

m (
kÞn

f 8~ urWn2rWku2!~rWn2rWk!50. ~4!

All particles are assumed to move in thexy plane. We find it
useful to describe the grain position by a complex varia
z5x1 iy . The complex version of Eq.~4! is

d2zn

dt2
1v0

2zn1
2

m (
kÞn

f 8~ uzn2zku2!~zn2zk!50. ~5!

Our initial goal is to obtain the solution corresponding to t
regular polygon. To do so we introduce the complexNth
root of 1,

h5expS 2p i

N D .

The sequencehn, n51,2,3, . . . forms a regular polygon in
the complexz plane. LetR be the radius of a circle circum
scribed about the polygonal cluster. Substituting

zn5Rhn, 1<n<N

into Eq.~5!, one can see that the equilibrium stationary po
gon obeys the restriction

v0
252

4

m (
k51

N21

sin2S pk

N D f 8~j!U
j54R2 sin2(pk/N)

. ~6!

Equation~6! should be used to obtain an equilibrium si
~i.e.,R) of the polygon in the given trapping field. Except fo
the simple case of power law of the mutual force, this has
be done numerically. Another possibility is to obtain a pa
bolic potential’s curvature required to confine a polygon
fixed sizeR. Then the conditionv0

2.0 must be met. In Fig.
1 the v0 dependence ofR is shown for small polygona
clusters and repulsive Yukawa potential. Note, thatv0 must
tend to infinity in the limit thatR becomes small. Thus in

FIG. 1. Trap parameterv0 is shown as a function of the equ
librium regular N-gon sizeR. The frequencyv0 is measured in
units ofn5Aq2/(mR3). In contrast withv0, the ratiov0 /n is finite
for small values ofR. The polygon size is measured in units
Debye lengthr d .
01640
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Fig. 1 the trap frequencyv0 is measured in units ofn
5Aq2/(mR3). The ratiov0 /n is finite for all values ofR.

The right-hand side of Eq.~6! is an example of the spe
cific trigonometric sum that will frequently appear below. T
simplify, we introduce the notation

Al~N!5
4

m (
k51

N21

sin2S pkl

N D @2 f 8~j!#j54R2 sin2(pk/N) ,

whereAN6 l(N)5Al(N) and Al(N)5A2 l(N). Equation~6!
takes the form

v0
25A1~N!. ~7!

Similarly, considering the polygon perturbation, it is us
ful to introduce

Bl~N!5
4

m (
k51

N21

sin2S pkl

N D @j f 9~j!#j54R2 sin2(pk/N)

with the same symmetry properties.
Now let us consider a small perturbation of the equil

rium polygon. To do so we substitutez1dz for z in Eq. ~5!.
More precisely, we put

zn1dzn5hn@R1wn~ t !#,

whereuwn(t)u!R. A rather cumbersome equation containin
wn(t) as well as its complex conjugatewn(t) is obtained.
The solution can be found as the superposition of two c
jugate harmonics,

wn~ t !5u~ t !h ln1v~ t !h2 ln, ~8!

where integerl is analogous of the azimuthal wave numbe
Note, that because of identityhN[1 there are onlyN differ-
ent complex harmonics. Thus in Eq.~8! one can assumel
ranging from 0 to1

2 N. Making some efforts yields the fol
lowing system:

d2u

dt2
1~A12Al 111Bl 11!u1~B12Bl !v50, ~9!

d2v

dt2
1~A12Al 211Bl 21!v1~B12Bl !u50, ~10!

where the argumentN is dropped in all trigonometric sums
In a standard way, we can assumeu,v;exp(ivt) to obtain

the dispersion relation

UA12Al 111Bl 112v2 B12Bl

B12Bl A12Al 211Bl 212v2U50.

~11!

Equation~11! results in two real values ofv2. For the sta-
bility sake, both eigenvalues should be positive. Then
stability criterion is
7-2
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SPECTRAL PROPERTIES OF SMALL DUSTY CLUSTERS PHYSICAL REVIEW E64 016407
~A12Al 111Bl 11!~A12Al 211Bl 21!>~B12Bl !
2.

~12!

For givenN the criterion must be met for all possible valu
of l. We investigate this condition for some important cas
in the next section.

III. APPLICATIONS

Although our main goal is to investigate small dusty clu
ters, the approach presented here is general. The only
quirement is that Eq.~7! should have a solution describing
stationary polygon. Thus the particles interaction should
repulsive, at least at small distances. If it is the case,
dispersion relation can be applied to any potential funct
U(r ). We start with two simple examples.

A. Vortex rings

Stability of vortex rings is a very old problem first studie
by Kelvin @14# and Thomson@15# in the context of the vortex
model of an atom. It is well known that in two dimension
the behavior of point vortexes in the ideal fluid is equivale
to dynamics of magnetized electron columns@16#. The inter-
action of two charged columns can be described by the lo
rithmic potential U(r )52q82ln(1/r ), where q8 should be
treated as the charge per unit of column length. We note,
for the one-component nonneutral plasma the external m
netic field acts like the two-dimensional parabolic poten
wall in the rotating frame of reference. In this case,

Al~N!5Bl~N!5
q82

mR2 (
k51

N21 sin2S pkl

N D
sin2S pk

N D , ~13!

wherem is the mass per unit of column length. Substituti
Eq. ~13! into Eq. ~12! we obtain the known stability crite
rion:

2~N21!> (
k51

N21 sin2S pkl

N D
sin2S pk

N D . ~14!

Recall, that for given vortexes numberN the criterion should
be met for alll, ranging from 0 to1

2 N. Surprisingly, the sum
in the right-hand side of Eq.~14! can be given in an explici
form,

(
k51

N21 sin2S pkl

N D
sin2S pk

N D 5 l ~N2 l !. ~15!

Using Eqs.~14! and~15! we can easily reproduce Tomson
theorem of vortex rings stability@17#.
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B. Trapped ions

Another simple example is a few ions stored in a pa
bolic trap@18#. The monolayer clusters can be observed i
radio frequency Paul trap@19# under conditions of strong
anisotropy. They have been investigated both numeric
@20–23# and analytically@23,24#. In this case,U(r )5q2/r
and

Al~N!5
2

3
Bl~N!5

q2

4mR3 (
k51

N21 sin2S pkl

N D
sin3S pk

N D .

Substituting these expressions into Eq.~12!, we can easily
obtain the criterion@24# describing the small ion cluster
stability.

C. Dusty grains

Now let us turn to dusty clusters. We assume that mut
repulsion of the grains can be described by Eq.~1!. To cal-
culate the trigonometric sums, one should use the functi

f ~j!5
q2

Aj
expS 2

Aj

r d
D . ~16!

The final form of criterion~12! is rather cumbersome and
not shown. It has been investigated numerically. ForN<4,
the regularN-gon is stable. The pentagon is stable forR
,3.32r d and unstable otherwise. The unstable mode co
sponds tol 52. All clusters withN>6 are unstable.

Figure 2 shows the squared frequency of the unstable p
tagon oscillations againstR. Note thatv2 goes negative and
the system becomes unstable for relatively big clusters. T
result can be used to verify the approximation of the rep
sive Yukawa potential. The model is incomplete in the ev
that the regular pentagon withR.3.32r d can be observed
~note that actually the cluster size is twiceR). Obviously, in
the limit thatR@r d the increment is extremely small due
Debye shielding. If it is the case, the instability can be eas
overcome by other effects.

FIG. 2. The squared frequency of the unstable pentagon o
lations against the values of the cluster sizeR. All variables are
normalized as in Fig. 1. The region withv2,0 corresponds to
instability. The pentagon withR.3.32r d can be observed only in
the event that repulsive Yukawa approximation for grains inter
tion is incomplete.
7-3
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IV. NORMAL DISPLACEMENTS AND FREQUENCIES

In this section, we directly calculate the eigenmodes
the stable polygonal clusters. The frequencies are determ
from dispersion relation~11! for an arbitrary form off (j).
Then the normal displacements can be found from Eqs.~9!
and ~10!. Alternatively, the normal displacements cana pri-
ori be found using the representations of the correspond
group of symmetries. We do not give this calculation in d
tail because it is known from the theory of molecular osc
lations @25#.

In general, a cluster consisting ofN particles must have
3N frequencies. We consider a monolayer cluster and fo
our attention on the oscillations in the cluster’s plane. Th
only 2N frequencies are left. There always exists a triv
mode withv50 corresponding to the rotation of the who
cluster. Another~doubly degenerate! trivial mode corre-
sponds to the shift of the whole cluster. Its frequen
v5v0. Then only 2N23 nontrivial modes should be con
sidered. For the simplest clusters, the sets of normal
placements are shown in Fig. 3. Dusty grains are drawn
solid circles. The arrows indicate the direction of the gra
motion. Some of the eigenmodes are singly degenerate,
as the radially symmetric polygon oscillation. Others a
doubly degenerate and described by two independent se
normal displacements. Obviously, these two sets can dif
ently be chosen.

A. Two particles

The equilibrium condition becomes

v0
252

4

m
f 8~4R2!.

The only nontrivial mode corresponds to radial oscillatio
@see Fig. 3~a!#. Its frequency is

FIG. 3. Sets of normal displacements for equilibrium polygo
clusters. Trivial modes corresponding to a whole cluster shift
rotation are not displayed. For doubly degenerated modes
eigenvectors~c!,~d! and ~f!,~g! correspond to the same frequenc
These eigenvectors can be chosen in different ways.
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v25
32R2

m
f 9~4R2!.

B. Triangle

The equilibrium condition becomes

v0
252

6

m
f 8~3R2!.

The frequency of the radial oscillations@see Fig. 3~b!# is

v25
36R2

m
f 9~3R2!.

In addition, there is a doubly degenerate nontrivial mode@for
possible sets of normal displacements see Figs. 3~c! and~d!#.
The corresponding frequency is

v25
18R2

m
f 9~3R2!.

C. Square

The equilibrium condition becomes

v0
252

4

m
@ f 8~2R2!1 f 8~4R2!#.

The frequency of the radial oscillations@see Fig. 3~e!# is

v25
16R2

m
@ f 9~2R2!12 f 9~4R2!#.

As for triangle, there is a doubly degenerate mode@for pos-
sible sets of normal displacements see Figs. 3~f! and ~g!#.
The corresponding frequency is

v25
4

m
@ f 8~2R2!2 f 8~4R2!14R2f 9~2R2!#.

In addition there are two singly degenerate modes@see Figs.
3~h! and ~i!# with

v25
32R2

m
f 9~4R2!

and

v25
16R2

m
f 9~2R2!,

respectively. In these modes the particles with odd and e
numbers move in opposite directions.

The frequencies for the pentagon and the other clus
are rather cumbersome and thus omitted here. They can
ily be obtained from Eq.~11! as it was described above.

It is worth mention, that all eigenvectors in Fig. 3 a
universal. They can be found using the group approach a
is described in standard textbooks on molecular vibrati

l
d
o
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@25#. These eigenvectors are independent of the conc
form of mutual potential. In contrast, most of normal d
placements depend on the specific form ofU(r ) for all clus-
ters beginning with the pentagon. Thus these clusters ar
less concern to experimental measurements.

To obtain the concrete results for the repulsive Yuka
potential one should substitute Eq.~16! into the expressions
of this section. We have also considered a generali
Yukawa potential with the long-range attraction, which
described by Eq.~2!. The expressions for the frequencies a
presented in the Appendix. Evidently, more general pot
tials can also be easily considered.

V. CONCLUSION

In conclusion let us summarize our results. We have c
sidered a polygonal pattern of dusty grains in the parab
confining potential wall. The mutual interaction is assum
to be described by a certain potential functionU(r ). Assum-
ing that the polygonal solution exists, we have found
stability criterion, the eigenmodes and their frequencies
an arbitrary form of mutual interaction. The exact expre
sions for the frequencies will allow us to restore some inf
mation onU(r ). In particular, the expressions for the fr
quencies listed in the Appendix, can help measure
possible long-range attraction of the dusty grains.
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APPENDIX

Here we list the frequencies of the polygon modes. W
assume the interaction of dusty grains be described by
~2!. The results for the pure Yukawa potential can be o
tained by settinga50.

The expressions are written in terms of dimensionl
variables. The frequencies are normalized byn
5Aq2/(mR3), the normalized frequencies are denoted
tilde. The distances are normalized by the Debye length,
use the dimensionless parameterl5R/r d .

1. Two particles

The equilibrium condition is

ṽ0
25

1

4
~112l!e22l2

1

4
a.
er
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The frequency of radial oscillations is

ṽ253ṽ0
21l2e22l.

2. Triangle

The equilibrium condition is

ṽ0
25

1

A3
~11A3l!e2A3l2

1

A3
a.

The frequency of radial oscillations is

ṽ253ṽ0
21A3l2e2A3l.

The frequency of the remaining doubly degenerate mode

ṽ25
3

2
ṽ0

21
A3

2
l2e2A3l.

3. Square

We introduce notation

ṽa
25

1

A2
~11A2l!e2A2l2

1

A2
a,

ṽb
25

1

4
~112l!e22l2

1

4
a.

Then the equilibrium condition becomes

ṽ0
25ṽa

21ṽb
2 .

The frequency of the radial oscillations is

ṽ253ṽ0
21l2~A2e2A2l1e22l!.

The frequency of the doubly degenerate mode is

ṽ252ṽa
21ṽb

21A2l2e2A2l.

The frequencies of the remaining singly degenerate mo
are

ṽ253ṽb
21l2e22l,

ṽ253ṽa
21A2l2e2A2l.
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