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Spectral properties of small dusty clusters
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A monolayer dusty crystal can be observed in the glow discharge. In particular, a small number of dusty
grains form simple atomlike plane clusters. Stability and oscillations of the polygonal cluster are considered.
For the simplest stable clusters normal displacements and frequencies are found for an arbitrary form of mutual
interaction. The measurement of these modes can help to give in detail the form of the potential function.
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[. INTRODUCTION repulsive interactions was observed in recent experiments
[10,11]. It can be classified as the strongly coupled atomlike

Numerous industrial applications have triggered active reclusters. The grains undergo some external confining force
search on the phenomena associated with dust dynamics that can be approximated by the parabolic potential,
low-pressure glow dischardé]. Dusty plasma is formed by
introducing micron-sized grains into plasma. Typically the Uconf=%mw§f2, 3
grains are negatively charged due to higher mobility of elec-
trons as pompared to that .of ions. Then the dusty grains calheremis the grain mass and, is seen as the frequency of
be electrically suspended in the sheath above the electrodes,. | illations of inale arain. The produtin? de-
where the gravity is exactly balanced by the electric force. a"".”‘ oscifiations of a singie grain. the pro 0

The suspended dusty particles can be strongly couple r|be§ thg conﬂnmg potential curvature. This curvature can
due to their high-negative chardabout 18 electrons per e varied in experiments.

micron-sized graipto form liquid states and ordered lattice Dep_er,1d|ng on the total number of partlcle_s the confmm_g
structures known as Coulomb crystass-7]. potential's detailed form and mutual repulsion, a compli-

The reader should keep in mind that the plasma edge ne Pted structure with the inner triangular cores surrounded by

the electrodes is characterized by highly nonequilibrium con:' ' outer circular shells can be observed. Certain number of
ditions. The grains are exposed to a vertical ion flow result-p"’lrt'cIes ha}ve mlult|ple stable equilibrium states. If the num-
ing both in an ion-drag forck8] and specific attractive forces ber of parngles is smalfirom 1 to S the grains form an
induced by the ions focusif@]. Then the mutual interaction extremel_y simple polygonal configuration. I_n this paper we
in a bulk dusty crystal is characterized by a complicate(:ts,tlJOly ”elgenmodes and spectral properties of such an
strongly anisotropic potential. atom.

Alternatively, a monolayer dusty crystal can also be in- The equilibrium c_lusty ?TVSta'S of th? smallest sizg are
duced in a glow discharge. In this case, the grains lie in é)redlctable. The grain position can be simulated by a simple

two-dimensional2D) plane normal to the vertical ion flow. girlzztil(fr?l Zroii[dlii]ﬁI;—P;i)?ﬁztyor;o')ggn()’g ﬁgggrﬁggor;éciétil
Their mutual interaction is much simpler and can be charac; Perp POYY b P USTY

. . . been considerefil3]. Here attention focuses on the oscilla-

terized by the repulsive Yukawa potential X . )
tions located in the polygon plane. The goal is to present the
9 r results applicable to the arbitrary potential functiorir),

U(r)= —exr{ - —), (1) provided that a polygonal solution exists. Then the measure-
ments of the eigenmodes and frequencies will allow one to

restore appropriate corrections to Ed).

r Iy
where g is the grain charge andy is the Debye length.
Equation(1) is believed to be a reasonable first approxima-
tion. In more complicated cases, it may be accomplished Il. BASIC EQUATIONS
with the terms describing the non-Debye shielding, the
shadow force, and other effects. In particular, we will con-
sider a more general potential function containing the short
range repulsion and the long-range attraction,

Let N point dusty grains with mass1 and chargeg be
exposed to the parabolic potenti@®). The equation of mo-
tion for the particlen includes the trapping potential contri-
bution and the forces of interaction with théh particle. We

2 ;{ r ) G assume that the grains interaction can be described by the

U(r)= qTex —a -, (2 potential functionU(r). In order to simplify the expression

for the mutual forces, we introduce a certain functiqg),

where the parameter ranges from 0 to 1. S0 fo put the potential in the form

In an infinite 2D crystal, the triangular lattice is the basic
i i U(r)=f(r?.
stable structure. The opposite case corresponds to a relatively
small number of dusty grains. This type of classical systems
consisting of a small number of particles interacting throughThen the classical equation of motion is
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' ' ' ' ] Fig. 1 the trap frequencyv, is measured in units ob
= g%/ (mR®). The ratiow,/ v is finite for all values ofR.

The right-hand side of E(q6) is an example of the spe-
cific trigonometric sum that will frequently appear below. To
simplify, we introduce the notation

4"kl
A'(N):E kz SIHZ(W)[_f,(g)]g4R25in2(7rk/N)’

=1

Wo/V

where Ay (N)=A;(N) and A|(N)=A_;(N). Equation(6)
takes the form

wg=Ay(N). )

FIG. 1. Trap parametep, is shown as a function of the equi- _ Similarly, considering the polygon perturbation, it is use-
librium regular N-gon sizeR. The frequencyw, is measured in  ful to introduce
units of v=\/g%/ (mR). In contrast withw,, the ratiow, /v is finite N-1
for small values ofR. The polygon size is measured in units of 4 Y .
Debye lengtir, . Bi(N)= = kgl sin? N [EF7(E) ] e= ar2 sir?(miin)

d?r, oo 2 Js s s with the same symmetry properties.
12 gt m &, F(ra=rd?(rn=rg=0. 4 Now let us consider a small perturbation of the equilib-

rium polygon. To do so we substituget 6z for zin Eq. (5).

Al particles are assumed to move in thg plane. We find it ~More precisely, we put
useful to describe the grain position by a complex variable N
z=x-+iy. The complex version of Ed4) is zy+6z,= 7 [R+wy(1)],

d?z, where|w,(t)|<R. A rather cumbersome equation containing

2
e + Wiz, + - kE f'(|zo—2d*)(z,—2)=0. (5)  w,(t) as well as its complex conjugate,(t) is obtained.
t n The solution can be found as the superposition of two con-
jugate harmonics,

Our initial goal is to obtain the solution corresponding to the
regular polygon. To do so we introduce the comphth —

2 where integet is analogous of the azimuthal wave number.
7;=exp< T) Note, that because of identity=1 there are onI\ differ-

ent complex harmonics. Thus in E(B) one can assumk
X B : .
The sequence,”, n=1,2,3 ... forms a regular polygon in anging from O tozN. Making some efforts yields the fol-

the complexz plane. LetR be the radius of a circle circum- OWing system:
scribed about the polygonal cluster. Substituting

d%u
z,=R7", 1lsns<N F+(A1_A|+1+B|+1)U+(31_B|)U:0, 9)
into Eq.(5), one can see that the equilibrium stationary poly-
gon obeys the restriction d?

U
F+(Al_A|—1+B|71)U+(51—B|)U:0, (10

(6)

5 a Nt [ Ky
of=—m 2, S| A . N _
k=1 where the argument is dropped in all trigonometric sums.
In a standard way, we can assume ~ exp(wt) to obtain
Equation(6) should be used to obtain an equilibrium size the dispersion relation

(i.e.,R) of the polygon in the given trapping field. Except for

£=4R2 sin2(mkIN)

the simple case of power law of the mutual force, this hasto  [A1—Aj11+Bj11— »? B:—B, ~0
be done nur_ne,rlcally. Another possibility is to obtain a para- B,— B, A—A_1+B_1—w?
bolic potential’s curvature required to confine a polygon of (11)

fixed sizeR. Then the conditionn3>0 must be met. In Fig.

1 the w, dependence oR is shown for small polygonal Equation(11) results in two real values ab?. For the sta-
clusters and repulsive Yukawa potential. Note, thgtmust  bility sake, both eigenvalues should be positive. Then the
tend to infinity in the limit thatR becomes small. Thus in stability criterion is
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(A=A 11 +BL ) (A=A -1 +B_1)=(B;—B)2. 12
12

For givenN the criterion must be met for all possible values

of I. We investigate this condition for some important cases

in the next section.

Ill. APPLICATIONS

Although our main goal is to investigate small dusty clus-

PHYSICAL REVIEWG&E 016407

0.01f

R/rga

-0.01f

ters, the approach presented here is general. The only re- FIG. 2. The squared frequency of the unstable pentagon oscil-

quirement is that Eq.7) should have a solution describing a

lations against the values of the cluster sReAll variables are

stationary polygon. Thus the particles interaction should beormalized as in Fig. 1. The region with?<0 corresponds to
repulsive, at least at small distances. If it is the case, ouinstability. The pentagon witlR>3.32% 4 can be observed only in
dispersion relation can be applied to any potential functiorthe event that repulsive Yukawa approximation for grains interac-

U(r). We start with two simple examples.

A. Vortex rings

Stability of vortex rings is a very old problem first studied
by Kelvin[14] and Thomsof15] in the context of the vortex
model of an atom. It is well known that in two dimensions

the behavior of point vortexes in the ideal fluid is equivalent

to dynamics of magnetized electron coluniti]. The inter-

tion is incomplete.

B. Trapped ions

Another simple example is a few ions stored in a para-
bolic trap[18]. The monolayer clusters can be observed in a
radio frequency Paul trapl9] under conditions of strong
anisotropy. They have been investigated both numerically
[20-23 and analytically[23,24). In this caseU(r)=q%/r
and

action of two charged columns can be described by the loga-

rithmic potential U(r)=2q’?In(1/r), where q’ should be

treated as the charge per unit of column length. We note, that
for the one-component nonneutral plasma the external mag-
netic field acts like the two-dimensional parabolic potential

wall in the rotating frame of reference. In this case,

akl

W)
k)’
N
wherem is the mass per unit of column length. Substituting
Eqg. (13) into Eqg. (12) we obtain the known stability crite-

rion:
N—1 Sinz(w—kl)
N
2(N-1)= >, ———.
k=1 . [k
Slnz(w)

Recall, that for given vortexes numbidrthe criterion should
be met for alll, ranging from 0 to;N. Surprisingly, the sum
in the right-hand side of Eq14) can be given in an explicit

form,
N—1 Sinz(
> ——
= k
K=t sin2<w

Using Eqgs.(14) and(15) we can easily reproduce Tomson's
theorem of vortex rings stability17].

N-1 Sin2<

12

AN=B(N)=— 5

(13
! sinz(

(14

Kkl

v

=I(N—1). (15)

N

kl
. _ZB - q2 leinz(%)
i )—§ i )_4mR3k=1 ns(”_k .
Sl N

Substituting these expressions into Efj2), we can easily
obtain the criterion[24] describing the small ion clusters
stability.

C. Dusty grains

Now let us turn to dusty clusters. We assume that mutual
repulsion of the grains can be described by 8g. To cal-
culate the trigonometric sums, one should use the function

ol )

Id
The final form of criterion(12) is rather cumbersome and is
not shown. It has been investigated numerically. Ret4,
the regularN-gon is stable. The pentagon is stable ®r
<3.324 and unstable otherwise. The unstable mode corre-
sponds td =2. All clusters withN=6 are unstable.

Figure 2 shows the squared frequency of the unstable pen-
tagon oscillations again®. Note thatw? goes negative and
the system becomes unstable for relatively big clusters. This
result can be used to verify the approximation of the repul-
sive Yukawa potential. The model is incomplete in the event
that the regular pentagon witR>3.324 can be observed
(note that actually the cluster size is twiBg. Obviously, in
the limit thatR>r 4 the increment is extremely small due to
Debye shielding. If it is the case, the instability can be easily
overcome by other effects.

(16)
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2
2_ " 2
A N w?=———1"(4R?).
,// E \/:‘.—— E :\/5——
// /'r/ N7 B. Triangle
The equilibrium condition becomes
@\ (e A E A 6
Ly X e & e wi=— —1'(3R).
! -7 \\ /’ \\ /, m
l‘: N 7 ‘1'/
{ ! The frequency of the radial oscillatiofisee Fig. &)] is
(g) A () A (1)~ 5
P N 7 N P \\; 2 36R 2
f 1 - »— f w = f"(3R7).
\\ ,/ \\ ,/ \\ // m
\II \1/ ‘l./
In addition, there is a doubly degenerate nontrivial midde

possible sets of normal displacements see Figs.ahd(d)].
FIG. 3. Sets of normal displacements for equilibrium polygonalThe corresponding frequency is
clusters. Trivial modes corresponding to a whole cluster shift and
rotation are not displayed. For doubly degenerated modes two ) 18R? )
eigenvectorgc),(d) and (f),(g) correspond to the same frequency. W= m f"(3R?).

These eigenvectors can be chosen in different ways.

IV. NORMAL DISPLACEMENTS AND FREQUENCIES C. Square

In this section, we directly calculate the eigenmodes for The equilibrium condition becomes

the stable polygonal clusters. The frequencies are determined 4
from dispersion relatiori11) for an arbitrary form off(¢). w(2)= — —[f'(2R?)+f'(4R?)].
Then the normal displacements can be found from Egjs. m

and(10). Alternatively, the normal displacements carpri- The f f th ial illati Ei :
ori be found using the representations of the corresponding e frequency of the radial oscillatiofsee Fig. 8] is

group of symmetries. We do not give this calculation in de- 16R?
tail because it is known from the theory of molecular oscil- w2=T[f”(2R2)+2f”(4R2)].
lations[25].

In general, a cluster consisting 8f particles must have  ag for triangle, there is a doubly degenerate mgide pos-
3N frequencies. We consider a monolayer cluster and focugjple sets of normal displacements see Fig§) &nd (g)].
our attention on the oscillations in the cluster’s plane. Thenrpe corresponding frequency is
only 2N frequencies are left. There always exists a trivial
mode withw=0 corresponding to the rotation of the whole , 4, 5 o pens s
cluster. Another(doubly degenerajetrivial mode corre- o :E[f (2R%) —f'(4R%) +4R*f"(2R7)].
sponds to the shift of the whole cluster. Its frequency
w=wo. Then only N—3 nontrivial modes should be con- |n addition there are two singly degenerate mojde® Figs.
sidered. For the simplest clusters, the sets of normal dis3(h) and (i)] with
placements are shown in Fig. 3. Dusty grains are drawn by
solid circles. The arrows indicate the direction of the grains 5 32R? P
motion. Some of the eigenmodes are singly degenerate, such - f"(4R?)
as the radially symmetric polygon oscillation. Others are
doubly degenerate and described by two independent sets ghd
normal displacements. Obviously, these two sets can differ-
ently be chosen.

16R?
w?=——1"(2R?),
m

A. Two particles ) . .
respectively. In these modes the particles with odd and even

The equilibrium condition becomes numbers move in opposite directions.
4 The frequencies for the pentagon and the other clusters
wg: — —f'(4R?). are rather cumbersome and thus omitted here. They can eas-
m

ily be obtained from Eq(11) as it was described above.
It is worth mention, that all eigenvectors in Fig. 3 are
The only nontrivial mode corresponds to radial oscillationsuniversal. They can be found using the group approach as it
[see Fig. 8)]. Its frequency is is described in standard textbooks on molecular vibrations
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[25]. These eigenvectors are independent of the concrefEhe frequency of radial oscillations is
form of mutual potential. In contrast, most of normal dis-

placements depend on the specific formudf) for all clus- w?=3wi+N\% 2\,
ters beginning with the pentagon. Thus these clusters are of
less concern to experimental measurements.

To obtain the concrete results for the repulsive Yukawa
potential one should substitute Ed.6) into the expressions  The equilibrium condition is
of this section. We have also considered a generalized
Yukawa potential with the long-range attraction, which is

2. Triangle

1 o 1
w3=—3(1+ Vane B - —

described by Eq(2). The expressions for the frequencies are J3 \/§a'
presented in the Appendix. Evidently, more general poten-
tials can also be easily considered. The frequency of radial oscillations is

V. CONCLUSION w2=3w2+\3\% ",

_ In conclusion let us summarize our results. We have conthe frequency of the remaining doubly degenerate mode is
sidered a polygonal pattern of dusty grains in the parabolic

confining potential wall. The mutual interaction is assumed ~. 3., 43 -
to be described by a certain potential functldfr). Assum- w2=§w§+7>\ze’ V3N

ing that the polygonal solution exists, we have found the

stability criterion, the eigenmodes and their frequencies for

an arbitrary form of mutual interaction. The exact expres- 3. Square
sions for the frequencies will allow us to restore some infor- \ye introduce notation

mation onU(r). In particular, the expressions for the fre-

guencies listed in the Appendix, can help measure the -~y 1 o, 1
possible long-range attraction of the dusty grains. wa=ﬁ(l+ \/Ek)e = Ea.
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Then the equilibrium condition becomes
APPENDIX
| | D=0l
Here we list the frequencies of the polygon modes. We
assume the interaction of dUSty grainS be described by Eq’he frequency of the radia| Osci”ations is
(2). The results for the pure Yukawa potential can be ob-
tained by settingr=0. 0?=302+ 2 (J2e Do),
The expressions are written in terms of dimensionless
variables. The frequencies are normalized by  The frequency of the doubly degenerate mode is
= g%/ (mR’), the normalized frequencies are denoted by
tilde. The distances are normalized by the Debye length, we ©?=202+ 0+ \2\%e 2\,
use the dimensionless parameXet R/r 4.
The frequencies of the remaining singly degenerate modes
1. Two particles are

The equilibrium condition is 2=3w2+\2e 2\,

-, 1 N U .
wo—Z(1+2)\)e e (02:3(051+ \/f)\ze“‘"z”.
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